Half-linear eigenvalue problem: Limit behavior of the first eigenvalue for shrinking interval
نویسندگان
چکیده
منابع مشابه
A linear eigenvalue algorithm for the nonlinear eigenvalue problem
The Arnoldi method for standard eigenvalue problems possesses several attractive properties making it robust, reliable and efficient for many problems. Our first important result is a characterization of a general nonlinear eigenvalue problem (NEP) as a standard but infinite dimensional eigenvalue problem involving an integration operator denoted B. In this paper we present a new algorithm equi...
متن کاملThe ∞−Laplacian first eigenvalue problem
We review some results about the first eigenvalue of the infinity Laplacian operator and its first eigenfunctions in a general norm context. Those results are obtained in collaboration with several authors: V. Ferone, P. Juutinen and B. Kawohl (see [BFK], [BK1], [BJK] and [BK2]). In section 5 we make some remarks on the simplicity of the first eigenvalue of ∆∞: this will be the object of a join...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملAn Algorithm for the Real Interval Eigenvalue Problem
In this paper we present an algorithm for approximating the range of the real eigenvalues of interval matrices. Such matrices could be used to model real-life problems, where data sets suffer from bounded variations such as uncertainties (e.g. tolerances on parameters, measurement errors), or to study problems for given states. The algorithm that we propose is a subdivision algorithm that explo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2013
ISSN: 1687-2770
DOI: 10.1186/1687-2770-2013-221